5197. com 3

化学所在制备具有“半导体-半导体异质结构”的纳米材料方面取得重要研究进展

火是易燃物伴随发光、放热并释放二氧化碳和水等产物的剧烈氧化过程。从本质上讲,火是由等离子体状态的物质组成的,因此被英国物理学家Sir
William
Crookes定义为有别于固态、液态和气态的物质的第四态。可见,火以其特殊的性质为纳米材料的制备提供了常规条件下无法获得的极端条件。

5197. com 1

Janus材料是指两种化学组成在同一体系具有明确分区结构,因而具有双重性质如亲水/疏水、极性/非极性,是材料科学的重要研究方向。如何实现这类复杂性胶体的普适性、可控性和量产性制备是其中的关键问题。

最近,胶体、界面与化学热力学院重点实验室高明远课题组在基金委、科技部以及中科院的资助下,在利用前驱体燃烧制备纳米材料方面取得了重要研究进展,成功地制备了具有特殊结构与形貌的纳米材料,如:g-Fe2O3llSiO2双面体球形磁性纳米颗粒及二十六面体g-Fe2O3纳米晶体。上述研究结果已经发表在近期的《先进材料》杂志上(Adv.
Mater.
, 2009, 21, 184-187)。

半个多世纪以来,具有异质结结构的半导体器件已经给人们的生活带来了革命性的变化。发展纳米材料的合成技术,制备具有纳米尺寸的“半导体-半导体异质结构”材料不仅是合成化学所面临的挑战,同时也是发展新型功能纳米材料的一个重要途径。

在国家自然科学基金委、科技部、中国科学院和化学所的支持下,化学所高分子物理与化学国家重点实验室的科研人员从2008年开始了Janus胶体制备方法的研究。利用单分散二氧化硅Pickering乳液油水界面的分区特性,结合双相的原子转移自由基聚合技术,制备了有机/无机复合Janus球形胶体
(Angew. Chem. Int. Ed. 2008, 47,
3973-3975)。进一步选择石蜡为油相冷却固定二氧化硅胶体,选区刻蚀制备非球形Janus胶体
(Chem. Commun. 2009,
3871-3873)。在此基础上,他们进一步发展了乳液种子聚合结合反应诱导相分离制备了系列亚微米Janus胶体材料,形态可控如哑铃形
(Chem. Commun.化学所在制备具有“半导体-半导体异质结构”的纳米材料方面取得重要研究进展。 2010, 4610-4612;Macromolecules 2010, 43,
5114-5120),该方法的重要性在于能够批量制备亚微米Janus胶体材料,为实际应用奠定了基础。

以g-Fe2O3llSiO2双面体球形磁性纳米颗粒的制备为例,他们采用甲醇等低沸点试剂作为溶剂及燃料,以乙酰丙酮铁及正硅酸乙酯为前驱体,通过直接燃烧前驱体的甲醇溶液,在火焰中得到了结构规整的g-Fe2O3llSiO2双面体球形磁性纳米颗粒。详细的研究结果表明,乙酰丙酮铁和正硅酸乙酯首先在火焰焰芯形成固溶体,然后在内焰进一步形成复合纳米颗粒,随着相分离的发生,最终在外焰部分形成由SiO2和g-Fe2O3组成的双面体型磁性纳米颗粒。类似结果在文献报道中并不多见,因为在常规条件下,无机化合物形成的固溶体,由于其组份具有高熔点而不易通过相分离产生异质结构,更无法形成球形的双面体结构。纳米材料由于具有高的表面能而表现出的低熔点,以及火焰提供的高至摄氏千度的反应环境直接导致了上述双面体球形磁性纳米颗粒的形成。

在国家自然科学基金委、科技部以及中科院的资助下,化学所胶体、界面与化学热力学院重点实验室高明远课题组在具有特殊结构和形貌的纳米材料的合成发面开展了系列研究工作,曾先后报道了具有核壳结构的CdTe纳米线(Langmuir,
2005, 21, 4205-4210),超长CdTe纳米管(Angew. Chem. Int. Ed.,
2006, 45,
6462–6466,VIP论文)及具有异质结构的SiO2/Fe3O4磁性微球(Advanced
Materials
, in press)的制备与性质研究。

最近,课题组研究人员以乳液界面为模板,利用乳液界面的Janus性质诱导溶胶-凝胶在其界面自组装制备了
Janus中空球,Janus中空球作为容器能选择性地在空腔内装载物质,为中空微球在油水分离和可控释放等方面的应用提供了新途径(Chem.
Commun.
2011, 47,
1231-1233)。将上述Janus中空球碎裂得到Janus纳米片材料,Janus片的组成和结构可调。Janus片作为颗粒乳化剂,能高效稳定流体,如可在空气中获得稳定的
“干液滴(dry
droplets)”。通过选择生长物质赋予其功能性如在亲水一侧吸附磁性Fe3O4纳米粒子得到磁响应性的Janus复合片,同时不改变其润湿性,实现了乳液液滴的磁操纵。上述特性在油水分离和强化采油等领域中具有重要意义。相关研究结果近期发表(Angew.
Chem. Int. Ed.
2011, 50, 2379-2382)后,被Nature
China的Research
Highlights栏目评述报道(

具有新颖双面体结构的γ-Fe2O3||SiO2磁性纳米颗粒由于其结构特殊性表现出非常独特的性质。首先,双面体颗粒具有铁磁性,但由于SiO2的存在,铁磁性的复合颗粒仍表现出非常好的胶体稳定性,因此在生物样品磁分离方面具有潜在的应用价值;其次,复合磁性纳米颗粒的双面体结构使不对称修饰成为可能,如通过对SiO2侧进行选择性疏水修饰得到的纳米颗粒表现出界面活性,在超声辅助下可形成磁性囊泡,而在气/液界面上也表现出择优取向行为;最后,利用SiO2可被氢氟酸刻蚀的性质,双面体结构γ-Fe2O3||SiO2磁性纳米颗粒可作为牺牲模板,用于构筑带有γ-Fe2O3芯的空心磁胶囊。

最近,该课题组在系统研究工作基础上,与国家纳米中心的唐智勇教授及北京交通大学光电子技术研究所联合报道了纳米尺寸的Cu2S-In2S3异质结构材料的制备与形貌控制机理研究(J.
Am. Chem. Soc.,
2008*, 130,*
13152-13161)。他们证明了导体硫化铜纳米颗粒可以催化硫化铟纳米晶体的生长,形成具有“半导体-半导体异质结构”的纳米材料,而类似的催化作用之前只在金属类纳米颗粒中被观察发现。他们的研究还表明在硫化铟纳米材料的形成过程中,由铜、铟前体化合物与反应介质十二硫醇的相互作用所导致的凝胶化现象可直接影响纳米材料的晶体生长动力学。据此,通过对凝胶化过程的控制,他们成功地实现了具有异质结构的火柴形及泪滴形的Cu2S-In2S3纳米材料以及铅笔形In2S3纳米材料的制备。

5197. com 2

5197. com 3

实际上,纳米材料的液相合成一般都离不开表面配体的参与,而表面配体分子发挥作用的前提是可以与纳米材料中的金属离子形成足够强的配位作用,以硫醇类的表面配体为例,大量的实验工作都证明它们可以同金属离子形成复杂的络合物(Angew.
Chem. Int. Ed.,
2006, 45, 6462–6466; Chem. Mater., 2004,
5197. com,16, 3853-
3859),而在有机介质中,这种络合作用往往可以导致体系的凝胶化。因此,利用表面配体与金属离子的配位作用所导致的凝胶化对纳米材料的生长,及得到的纳米材料的结构与形貌进行控制具有重要的普适意义,而且必将成为纳米材料合成研究中一个值得关注的重要发展方向。

Janus片制备及用作颗粒乳化剂示意图

胶体、界面与化学热力学院重点实验室

胶体、界面与化学热力学院重点实验室

高分子物理与化学国家重点实验室

2009年4月20日

2008年12月8日

2011年4月1日